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The hydrophobic free energy and solvent accessibility of amino acids are used to study the relationship
between the primary structure and structural classification of large proteins. A measure representation and a Z
curve representation of protein sequences are proposed. Fractal analysis of the measure and Z curve represen-
tations of proteins and multifractal analysis of their hydrophobic free energy and solvent accessibility se-
quences indicate that the protein sequences possess correlations and multifractal scaling. The parameters from
the fractal and multifractal analyses on these sequences are used to construct some parameter spaces. Each
protein is represented by a point in these spaces. A method is proposed to distinguish and cluster proteins from
the �, �, �+�, and � /� structural classes in these parameter spaces. Fisher’s linear discriminant algorithm is
used to give a quantitative assessment of our clustering on the selected proteins. Numerical results indicate that
the discriminant accuracies are satisfactory. In particular, they reach 94.12% and 88.89% in separating �
proteins from �� ,�+� ,� /�� proteins in a three-dimensional space.
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I. INTRODUCTION

The molecular function of a protein can be inferred from
its structure information �1�. The three-dimensional �3D�
structure of a protein is determined by its amino acid se-
quence via the process of protein folding �2–5�. The predic-
tion of protein structure and function from amino acid se-
quences is one of the most important problems in molecular
biology. There were some arguments that protein structures
could not be accurately predicted directly from sequences
�6�. On the other hand, protein secondary structure, which is
a summary of the general conformation and hydrogen bond-
ing pattern of the amino acid backbone �7,8�, provides some
knowledge to further simplify the complicated 3D structure
prediction problem. Hence an intermediate but useful step is
to predict the protein secondary structure. Since the 1970s,
many methods have been developed for predicting protein
secondary structure such as neural networks �9�, hidden Mar-
kov models �10�, multiple sequence alignments �11�, ad-
vanced machine learning techniques �12�, and support vector
machines �6�. More recent references in this field are pro-
vided by Adamczak et al. �13�.

Based on their secondary structures, proteins are known
to group into four main classes: the � helices, the � strands,
and those with a mixture of � and � shapes called �+� and
� /�. In fact, Hou et al. �1� �see also a short report recently
published in Science �14�� constructed a map of the protein
structure space using the pairwise structural similarity of
1898 protein chains. They found that the space has a defining
feature showing these four classes clustered together as four

elongated arms emerging from a common center. In this pa-
per, we aim to identify certain parameters that are character-
istic of these four classes, and develop tools to estimate these
parameters, which then form certain parameter spaces of pro-
tein structures. These tools, which are based on the concepts
of fractal geometry and multifractal analysis, are capable of
distinguishing proteins in these classes. The parameters are
obtained from the detailed hydrophobic-polar �HP� model of
protein behavior, the hydrophobic free energy of amino ac-
ids, and the solvent accessibility of the side chain of a pro-
tein. The latter two parameters are two chemical properties
related to the protein folding process according to physical
and chemical principles. These are two significant param-
eters which provide useful information toward the protein
folding problem. Researchers are still looking for the univer-
sal architectural logic hidden in protein sequences.

A simplified but well-known model of protein behavior is
the HP model proposed by Dill �15�. In this model, 20 kinds
of amino acids are divided into two types, hydrophobic �H�
�or nonpolar� and polar �P� �or hydrophilic�. By studying the
model on lattices, Li et al. �16� found that there are a small
number of structures with exceptionally high designability
which a large number of protein sequences possess as their
ground states. These highly designable structures are found
to have proteinlike secondary structures �5,16–18�. But the
HP model lacks sufficient information on the heterogeneity
and the complexity of the natural set of residues �19�. Ac-
cording to Brown �20�, the polar class of the HP model can
be divided into three subclasses: positive, uncharged, and
negative polar. So the 20 different kinds of amino acids can
be divided into four classes: nonpolar, negative polar, un-
charged polar, and positive polar. In this model, more details
can be considered than in the HP model. We call this model
a detailed HP model �21�. In this paper, information on the
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detailed HP model is used to construct the measure represen-
tation and the Z curve representation of a protein.

The hydrophobic free energy of amino acids has been
used to study protein structure via wavelet analysis �22–25�.
Measured in kcal/mol, the hydrophobic free energies of the
20 amino acids are A=0.87, R=0.85, N=0.09, D=0.66, C
=1.52, Q=0.0, E=0.67, G=0.0, H=0.87, I=3.15, L=2.17,

K=1.65, M=1.67, F=2.87, P=2.77, S=0.07, T=0.07,
W=3.77, Y=2.76, and V=1.87 �24�. For example, we give
the hydrophobic free energy sequence of the protein annexin
VI �Protein Data Base �PDB� ID: 1AVC� in the top panel of
Fig. 1.

The solvent accessibility of the side chain of a protein has
also been used to study the secondary structure prediction

FIG. 1. The hydrophobic free
energy sequence �top� and the sol-
vent accessibility sequence �bot-
tom� of the protein annexin VI.
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�13,26� and structural classification of proteins �27�. The sol-
vent accessibilities for solvent exposed area larger than
30 Å2 are S=0.70, T=0.71, A=0.48, G=0.51, P=0.78, C
=0.32, D=0.81, E=0.93, Q=0.81, N=0.82, L=0.41, I
=0.39, V=0.40, M=0.44, F=0.42, Y=0.67, W=0.49, K
=0.93, R=0.84, and H=0.66 �28�. The solvent accessibility
sequence of the protein annexin VI is shown in the bottom
panel of Fig. 1 as an example.

Fractal geometry provides a mathematical formalism for
describing complex spatial and dynamical structures �29,30�.
Multifractal analysis is a useful way to characterize the spa-
tial heterogeneity of both theoretical and experimental fractal
patterns �31�. In recent years it has been applied successfully
in many different fields including time series analysis and
financial modeling �32�. Some applications of fractal meth-
ods to DNA sequences are provided in �32–34� and the ref-
erences therein.

Fractal methods have also been used to study proteins.
These include fractal analysis of the proton-exchange kinet-
ics �35�, chaos game representation of protein structures �36�
and sequences based on the detailed HP model �37�, multi-
fractal analysis of the measure representation of protein se-
quences �38�, fractal dimension of protein mass �39�, and
fractal properties of protein chains �40�. But there has not
been much work related to the secondary structure using
fractal methods. We have found only a few existing studies:
simulation of the measure representation of proteins using
iterated function systems �21�, and multifractal analysis of
the solvent accessibility of protein �27� and the fractal di-
mensions of protein secondary structure elements �41�. In
this paper, we will obtain certain parameters from fractal
analysis of the hydrophobic free energy and solvent accessi-
bility sequences, and use them to construct some parameter
spaces. Each protein is represented by a point in these
spaces. A method is proposed to distinguish proteins from
the �, �, �+�, and � /� structural classes in these parameter
spaces.

II. DETAILED HP MODEL AND MEASURE
REPRESENTATION OF PROTEIN SEQUENCES

A. Measure representation

We first outline the definition of the detailed HP model
proposed in our previous work �21�. Twenty different kinds
of amino acids are found in proteins. In the detailed HP
model, they are divided into four classes: nonpolar, negative
polar, uncharged polar, and positive polar. The nonpolar class
consists of the eight residues ALA, ILE, LEU, MET, PHE,
PRO, TRP, VAL; the negative polar class consists of the two
residues ASP, GLU; the uncharged polar class is made up of
the seven residues ASN, CYS, GLN, GLY, SER, THR, TYR;
and the remaining three residues ARG, HIS, LYS constitute
the positive polar class.

For a given protein sequence s=s1¯sL with length L,
where si is one of the 20 kinds of amino acids for i
=1, . . . ,L, we define

ai = �
0 if si is nonpolar,

1 if si is negative polar,

2 if si is uncharged polar,

3 if si is positive polar.

�1�

This results in a sequence X�s�=a1¯aL, where ai is a letter
of the alphabet �0,1 ,2 ,3�.

We call any string made of K letters from the set
�0,1 ,2 ,3� a K string. For a given K, there are in total 4K

different K strings. In order to count the number of K strings
in a sequence X�s� from a protein sequence s, 4K counters are
needed. We divide the interval �0,1� into 4K disjoint sub-
intervals, and use each subinterval to represent a counter.
Letting r=r1¯rK, ri� �0,1 ,2 ,3�, i=1, . . . ,K, be a substring
with length K, we define

xleft�r� = �
i=1

K
ri

4i �2�

and

xright�r� = xleft�r� +
1

4K . �3�

We then use the subinterval �xleft�r� ,xright�r�� to represent
substring r. Let NK�r� be the number of times that a substring
r with length K appears in the sequence X�s� �when we count
these numbers, we open a reading frame with width K and
slide the frame one amino acid each time�. We define

FK�r� = NK�r�/�L − K + 1� �4�

to be the frequency of substring r. It follows that ��r�FK�r�
=1. We can now define a measure �K on �0,1� by d�K�x�
=Y�x�dx, where

YK�x� = 4KFK�r� when x � �xleft�r�,xright�r��. �5�

It is seen that 	0
1d�K�x� =1 and �K��xleft�r� ,xright�r��� =FK�r�.

We call �K the measure representation of the protein se-
quence corresponding to the given K. As examples, the his-
tograms of the measure representation for proteins human
serum albumin �1BJ5�, sialidase �1EUT�, neutral endopepti-
dase �1DMT�, and apo-ovotransferin �1AOV� for K=4 and 5
are given in Fig. 2.

B. Iterated function system model

In order to simulate the measure representation of a pro-
tein sequence, we propose to use the iterated function system
�IFS� model �see �21�, �32�, and �42��. IFS is the name given
by Barnsley and Demko �43� originally to a system of con-
tractive maps w= �w1 ,w2 , . . . ,wN�. Let E0 be a compact set in
a compact metric space, E�1�2¯�n

=w�1
�w�2

� ¯ �w�n
�E0�

and

En = �
�1,. . .,�n��1,2,. . .,N�

E�1�2¯�n
.

Then E=�n=1
� En is called the attractor of the IFS. The at-

tractor is usually a fractal set and the IFS is a relatively
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FIG. 2. �Color online� The histograms of measure representation for proteins human serum albumin, sialidase, neutral endopeptidase, and
apo-ovotransferin for K=4 �left� and 5 �right�.
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general model to generate many well-known fractal sets such
as the Cantor set and the Koch curve. Given a set of prob-
abilities Pi�0, �i=1

N Pi=1, pick an x0�E and define the it-
eration sequence

xn+1 = w�n
�xn�, n = 0,1,2,3, . . . ,

where the indices �n are chosen randomly and independently
from the set �1,2 , . . . ,N� with probabilities P��n= i�= Pi.
Then every orbit �xn� is dense in the attractor E �43�. For n
large enough, we can view the orbit �x0 ,x1 , . . . ,xn� as an
approximation of E. This process is called the chaos game.

Let � be the invariant measure on the attractor of the IFS
and �B the characteristic function for the Borel subset B�E;
then from the ergodic theorem for the IFS �43�

��B� = lim
n→�


 1

n + 1�
k=0

n

�B�xk�� .

In other words, ��B� is the relative visitation frequency of B
during the chaos game. A histogram approximation of the
invariant measure may then be obtained by counting the
number of visits made to each pixel on the computer screen.

C. Moment method to estimate the parameters
in the IFS model

The coefficients in the contractive maps and the probabili-
ties in the IFS model are the parameters to be estimated for a
real measure which we want to simulate. Vrscay �44� de-
scribed a moment method to perform this task. If � is the
invariant measure and E the attractor of the IFS in R, the
moments of � are

gi = �
E

xid�, g0 = �
E

d� = 1. �6�

If wi�x�=cix+di, i=1, . . . ,N, then the following well-known
recursion relations hold �44�:


1 − �
i=1

N

Pici
n�gn = �

j=1

n 
n

j
�gn−j
�

i=1

N

Pici
n−jdi

j� . �7�

Thus, setting g0=1, the moments gn, n	1, may be computed
recursively from a knowledge of g0 , . . . ,gn−1. If we denote
by Gk the moments obtained directly from the real measure
using �6� and gk the formal expression of moments obtained
from �7�, then through solving the optimization problem

min
ci,di,Pi

�
k=1

n

�gk − Gk�2 for some chosen n , �8�

we can obtain the estimated values of the parameters in the
IFS model.

From the measure representation of a protein sequence,
we see that it is natural to choose N=4 and

w1�x� = x/4, w2�x� = x/4 + 1/4,

w3�x� = x/4 + 1/2, w4�x� = x/4 + 3/4,

in the IFS model. For a given measure representation of a
protein sequence, we obtain the estimated values of the prob-

abilities P1 , P2 , P3 , P4 by solving the optimization problem
�8�. Based on the estimated values of the probabilities, we
can use the chaos game to generate a histogram approxima-
tion of the invariant measure of the IFS, which can be com-
pared with the real measure representation of the protein se-
quence.

III. Z CURVE REPRESENTATION OF PROTEINS
AND DETRENDED FLUCTUATION ANALYSIS

The concept of the Z curve representation of a DNA se-
quence was first proposed by Zhang and Zhang �45�, and was
used to distinguish coding and noncoding DNA sequences
�46,47�. We propose a similar concept for proteins in the
present paper. Once we get the sequence X�s�=a1¯aL for a
protein as in Sec. II A, where ai is a letter of the alphabet
�0,1 ,2 ,3�, we can define the Z curve representation of this
protein as follows. This Z curve consists of a series of nodes
Qi, i=0,1 , . . . ,L, whose coordinates are denoted by xi, yi,
and zi. These coordinates are defined as

xi = 2�vi
0 + vi

2� − i,

yi = 2�vi
0 + vi

1� − i,

zi = 2�vi
0 + vi

3� − i, i = 0,1,2, . . . ,L , �9�

where vi
0, vi

1, vi
2, vi

3 denote the number of occurrences of the
symbols 0 ,1 ,2 ,3 in the prefix a1a2¯ai respectively, and
v0

0=v0
1=v0

2=v0
3=0. The connection of nodes Q0,Q1 , . . . ,QL

one by one by lines is defined as the Z curve representation
of this protein. We then define


xi = xi − xi−1,


yi = yi − yi−1,


zi = zi − zi−1, i = 1,2, . . . ,L , �10�

where 
xi, 
yi, and 
zi can only have values 1 and −1. For
example, we show the Z curve representation of the protein
annexin VI in Fig. 3.

The exponent in a detrended fluctuation analysis can be
used to characterize the correlation of a time series �33,48�.
We view 
xi, 
yi, and 
zi, i=1,2 , . . .L, as time series. We
denote a time series by F�t� , t=1, . . . ,L. First, the time series
is integrated as T�k�=�t=1

k �F�t�−Fav�, where Fav is the aver-
age over the whole time period. Next, the integrated time
series is divided into boxes of equal length n. In each box of
length n, a linear regression is fitted to the data by least
squares, representing the trend in that box. The T coordinate
of the straight line segments is denoted by Tn�k�. We then
detrend the integrated time series T�k� by subtracting the
local trend Tn�k� in each box. The root-mean-square fluctua-
tion of this integrated and detrended time series is computed
as
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F�n� = 1

N
�
k=1

N

�T�k� − Tn�k��2. �11�

Typically, F�n� increases with box size n. A linear relation-
ship on a log-log graph indicates the presence of scaling

F�n� � n�. �12�

Under such conditions, the fluctuations can be characterized
by the scaling exponent �, the slope of the line relating
ln F�n� to ln n. For uncorrelated data, the integrated value
T�k� corresponds to a random walk, and therefore �=0.5. A
value of 0.5�1.0 indicates the presence of long memory
so that, for example, a large value is likely to be followed by
a large value. In contrast, the range 0�0.5 indicates a
different type of power-law correlation such that positive and
negative values of a time series are more likely to alternate.
The exponents � for the 
xi, 
yi, and 
zi, i=1,2 , . . . ,L, of
the Z curve representation of DNA sequences were used to
construct a parameter space to distinguish coding and non-
coding sequences �46�. We consider the exponents � for the

xi, 
yi, and 
zi, i=1,2 , . . . ,L, of the Z curve representation
of protein sequences as candidates to construct parameter
spaces for proteins in this paper. These exponents are de-
noted by �x, �y, and �z, respectively.

IV. MULTIFRACTAL ANALYSIS OF HYDROPHOBIC
FREE ENERGY AND SOLVENT ACCESSIBILITY

OF PROTEINS

In this section, we view the hydrophobic free energy and
solvent accessibility sequences of proteins as time series. Us-
ing a similar method to positive time series proposed in our
previous paper �49�, we can get a measure from the hydro-

phobic free energy sequence or solvent accessibility se-
quence of a protein. The most common algorithms of multi-
fractal analysis are the so-called fixed-size box-counting
algorithms �50�. In the one-dimensional case, for a given
measure � with support E�R, we consider the partition sum

Z��q� = �
��B��0

���B��q, �13�

q�R, where the sum runs over all different nonempty boxes
B of a given side � in a grid covering of the support E, that
is,

B = �k�,�k + 1���. �14�

The exponent ��q� is defined by

��q� = lim
�→0

ln Z��q�
ln �

�15�

and the generalized fractal dimensions of the measure are
defined as

Dq = ��q�/�q − 1� for q � 1 �16�

and

Dq = lim
�→0

Z1,�

ln �
for q = 1, �17�

where Z1,�=���B��0��B�ln ��B�. The generalized fractal di-
mensions are numerically estimated through a linear regres-
sion of �ln Z��q�� / �q−1� against ln � for q�1, and similarly
through a linear regression of Z1,� against ln � for q=1. The
value D1 is called the information dimension and D2 the
correlation dimension.

FIG. 3. The Z curve represen-
tation of the protein annexin VI.
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The concept of phase transitions in multifractal spectra
was introduced in the study of logistic maps, Julia sets, and
other simple systems. Evidence of a phase transition was
found in the multifractal spectrum of diffusion-limited aggre-
gation �51�. By following the thermodynamic formulation of
multifractal measures, Canessa �52� derived an expression
for the analogous specific heat as

Cq � −
�2��q�
�q2 � 2��q� − ��q + 1� − ��q − 1� . �18�

He showed that the form of Cq resembles a classical phase
transition at a critical point for financial time series. In a later
section, we will discuss the property of Cq for measures from
the hydrophobic free energy and solvent accessibility se-
quences of proteins.

The singularities of a measure are characterized by the
Lipschitz-Hölder exponent �, which is related to ��q� by

��q� =
d

dq
��q� . �19�

Substitution of Eq. �15� into Eq. �19� yields

��q� = lim
�→0

�
��B��0

���B��qln ��B�

Z��q�ln �
. �20�

Again the exponent ��q� can be estimated through a linear
regression of ���B��0���B��qln ��B� /Z��q� against ln � �27�.
And the multifractal spectrum f��� versus � can be calcu-
lated according to the relationship

f��� = q��q� − ��q� . �21�

V. RESULTS AND DISCUSSION

The methods introduced in the previous sections can only
be used for long protein sequences �corresponding to large
proteins�. The amino acid sequences of 43 large proteins
were selected from the RCSB Protein Data Bank �58�. These
43 proteins, which are listed in Table I, belong to four struc-
tural classes �53� according to their secondary structures.

First, we converted the amino acid sequences of these
proteins into their measure representations with K=5 accord-
ing to the method of Sec. II A. If K is too small, there will
not be enough combinations of length K from the set
�0,1 ,2 ,3�, hence this would not yield reliable results in a
statistical sense. If K is too large, the frequencies of most
substrings will be zero and, as a result, useful biological
information would not be gleaned from the measure repre-
sentation. Although the difference between the histograms of
four-strings and five-strings is not significant �as shown in
Fig. 2�, on balance we selected K=5 with the view that con-
sideration of more sample points in the measure representa-
tion is better in the statistical sense, and a length of less than
1000 of the selected proteins would not allow a higher value
of K. We found that the IFS model corresponding to K=5 is
a good model to simulate the measure representation of pro-
tein sequences, and the estimated value of the probability P1

from the IFS model contains information useful for the sec-
ondary structural classification of proteins �21�. We per-
formed an IFS simulation for the proteins selected and
adopted the estimated parameter P1 as one parameter to con-
struct the parameter space for proteins.

Second, we converted the amino acid sequences of these
proteins to their Z curve representations and performed their
detrended fluctuation analysis. The exponents �x, �y, and �z
were estimated and used as candidate parameters to construct
the parameter space.

Third, the generalized fractal dimensions Dq and the re-
lated spectra Cq, multifractal spectra f��� of hydrophobic
free energy sequences and solvent accessibility sequences of
all 43 proteins were computed. For examples, the Dq curves
for the hydrophobic free energy sequences of four proteins
are shown in the top panel of Fig. 4 and their related Cq
curves are shown in the bottom panel of Fig. 4; the multi-
fractal spectra f��� for the hydrophobic free energy se-
quences and solvent accessibility sequences of the four pro-
teins are shown in Fig. 5.

Last, for the structural classification problem of proteins,
we consider the following parameters: P1 from the IFS esti-
mations of the measure representations; the exponents �x, �y,
�z from the detrended fluctuation analysis of the Z curve
representations; the range of Dq �that is, the value D−15
−D15 in our frame�; the maximum value of Cq �denoted
Cmax q�; the value q0 of q which corresponds to the maxi-
mum value of Cq; the maximum value of � �denoted �max�,
the minimum value of � �denoted �min�, and 
� �defined by
�max−�min� from the multifracal analysis of the hydrophobic
free energy �HE� sequences and solvent accessibility �SA�
sequences of proteins as candidates to construct parameter
spaces. In a parameter space, one point represents a protein.
We want to determine whether the proteins can be separated
from four structural classifications in these parameter spaces.
We found that in the 2D space �q0 for HE, P1� and the 3D
space �q0 for HE, P1, Cmax q for SA�, the proteins from the �
class group together and are separated from the proteins from
the other classes. These results are shown in Figs. 6 and 7.
Then, in the 3D space �
� for SA, P1, �z for the Z curve�,
the proteins from the �+� class form a group which can be
separated from the proteins from the � and � /� classes as
shown in Fig. 8. Finally, in the 3D space ��max for SA, �min
for SA, P1�, the proteins from the � and � /� classes can be
separated as shown in Fig. 9.

So we propose a method which consists of the following
three components to cluster proteins: �i� separating � pro-
teins from �� ,�+� ,� /�� proteins in the 2D space �q0 for
HE, P1� and the 3D space �q0 for HE, P1, Cmax q on SA�; �ii�
separating �+� proteins from �� ,� /�� proteins in the 3D
space �
� for SA, P1, �z for the Z curve�; �iii� separating �
proteins from � /� proteins in the 3D space ��max for SA,
�minfor SA, P1�.

In order to give a quantitative assessment of our cluster-
ing on the selected proteins, we use Fisher’s linear discrimi-
nant algorithm �54–56� to calculate the discriminant accura-
cies of our method.

Fisher’s discriminant algorithm is used to find a classifier
in the parameter space for a training set. The given training
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set H= �x1 ,x2 , . . . ,xn� is partitioned into n1�n training vec-
tors in a subset H1 and n2�n training vectors in a subset H2,
where n1+n2=n and each vector xi is a point in the 2D or 3D
parameter space. Then H=H1�H2. We need to find a

parameter vector w= �w1 ,w2� for the 2D space and w
= �w1 ,w2 ,w3� for the 3D space such that �yi=wTxi�i=1

n can be
classified into two classes in the space of real numbers. If we
denote

TABLE I. Properties of the 43 proteins selected.

Class PDB ID Protein length

� 1AVC Annexin VI 673

1B89 Clethrin heavy chain 449

1BJ5 Human serum albumin 585

1HO8 Vacuolar ATP synthase subunit H 480

1IAL Importin alpha 453

1QSA Soluble lytic transglycosylase SH70 618

2BCT �-catenin 516

5EAS 5-epi-aristolochene synthase 548

1A65 Laccase 504

1A6C Tobacco ringspot virus capsid protein 513

1B8F Histidine ammonia-lyase 509

1BKE Serum albumin 581

1DL2 Class I �-1,2-mannosidase 511

� 1B9S Neuramindase 390

1DAB P.69 pertactin 539

1EUT Sialidase 605

1FNF Fibronectin 368

1JX5 Integrin �-Iib 452

1MAL Maltoporin 421

1C8F Feline panleukopenia virus capsid 548

1DBG Chondroitinase B 506

1DZL Late major capsid protein L1 505

�+� 1B90 �-amylase 516

1BBU Lysyl-tRNA synthetase 504

1BYT Lioxygenase-3 857

1CLC Endoglaeanase celd 639

1E7U Phosphatidylinositol 3-kinase catalytic subunit 961

1DMT Neutral endopeptidase 696

1EWF Bactericidal/permeability-increasing protein 456

1BP1 Bactericidal/permeability-increasing protein 456

1KA2 M32 carboxypeptidase 499

� /� 1A8I Glycogen phosphorylase B 841

1ACJ Acetylcholinesterase complexed with tacrine 537

1AOV Apo-ovotransferin 686

1BFD Benzoylformate decarboxylase 528

1CRL Lipase �Triacylglycerol hydrolase� 534

1ACL Acetylcholinesterase complexed with
decamethonium

537

1AIV Ovotransferrin 686

1AK5 Inosine-5�-monophosphate dehydrogenase 503

1AKN Bile-salt activated lipase 579

1AX9 Acetylcholinesterase 537

1AXR Glycogen phosphorylase 842

1B1X Lactoferrin 689
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m j =
1

nj
�

xi�Hj

xi, j = 1,2, �22�

S j = �
xi�Hj

�xi − m j��xi − m j�T, j = 1,2, �23�

Sw = S1 + S2, �24�

then the parameter vector w is estimated as Sw
−1�m1−m2�

�55�. As a result, Fisher’s discriminant rule becomes assign x
to H1 if �m1−m2�TCw

−1�x− 1
2 �m1+m2���0 and to H2 other-

wise. �54�.
We use the whole data set as the training set because the

selected protein data set is small. The discriminant accura-
cies for resubstitution analysis are defined as

pH1 = ncH1/n1, �25�

FIG. 4. The Dq curves for the
hydrophobic free energy se-
quences of the four proteins �top�
and their related Cq curves
�bottom�.

CLUSTERING OF PROTEIN STRUCTURES USING¼ PHYSICAL REVIEW E 73, 031920 �2006�

031920-9



pH2 = ncH2/n2, �26�

where ncH1 and ncH2 denote the number of correctly discrimi-
nated H1 elements and the number of correctly discriminated
H2 elements in the training set, respectively.

We denote all � proteins as H2, the left �� ,�+� ,� /��
proteins as H1 in the 2D space �q0 for HE, P1� and the 3D
space �q0 for HE, P1, Cmax q on SA�; all �+� proteins as H2,

the left �� ,� /�� proteins as H1 in the 3D space �
� for SA,
P1 ,�z for the Z curve�; all � proteins as H1, all � /� proteins
as H2 in the 3D space ��max for SA, �min for SA, P1�. The
estimated parameters w= �w1 ,w2 ,w3� in Fisher’s discrimi-
nant algorithm and the discriminant accuracies for proteins
in parameter spaces shown in Figs. 6–9 are given in Table II.
From the discriminant accuracies, it is seen that our cluster-
ing is satisfactory and the step to separate � proteins from

FIG. 5. The multifractal spec-
tra f��� for the hydrophobic free
energy sequences �top� and sol-
vent accessibility sequences �bot-
tom� of the four proteins.
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� /� proteins is the most difficult step. The discriminant ac-
curacies in 3D space �q0 for HE, P1, Cmax q on SA� are
higher than those in 2D space �q0 for HE, P1�.Hence the
dimension added by Cmax q on SA does add more informa-
tion to separate � proteins from �� ,�+� ,� /�� proteins.

The scaling of the solvent accessibility has been used to
study structural classification of proteins by Balafas and

Dewey �27�. We tried this method for the selected 43 pro-
teins, but the method does not work well for this data set.

VI. CONCLUSIONS

The measure representation, Z curve representation, hy-
drophobic free energy sequence, and solvent accessibility se-

FIG. 6. �Color online� The
two-dimensional space �q0 for
HE, P1� for proteins. In this space,
the � class proteins gather as a
group and can be separated from
the proteins from the other
classes.

FIG. 7. �Color online� The
space �q0 for HE, P1, Cmax q for
SA�. In this space the � class pro-
teins gather as a group and can be
separated from the proteins from
the other classes.
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quence of proteins provide useful information and visualiza-
tion of their secondary and three-dimensional structures.

If a protein sequence is completely random, then the mea-
sure representation yields a uniform measure. From the mea-
sure representation, the values of the exponent � of the Z
curve representation, and the values of Dq, Cq, and f��� on
the hydrophobic free energy sequence and solvent accessibil-
ity sequence, it is seen that there is a clear difference be-
tween the protein sequences considered here and a com-

pletely random sequence. Hence we can conclude that these
protein sequences possess correlations. In fact, it is widely
recognized that a protein sequence is not a completely ran-
dom sequence �for example, see Pande et al. �57��.

From the Dq curves of all hydrophobic free energy se-
quences and solvent accessibility sequences for proteins se-
lected, it is seen that they are multifractal-like and suffi-
ciently smooth so that the Cq curves can be meaningfully
estimated. The Cq curves resemble a classical phase transi-

FIG. 8. �Color online� The
space �
� for SA, P1, �z for Z
curve�. In this space, the proteins
from the �+� class form a group
which can be separated from the
proteins from the � and � /�
classes.

FIG. 9. �Color online� The
space ��max for SA, �min for SA,
P1�. In this space, the proteins
from the � and � /� classes can be
separated.
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tion at a critical point, while the f��� curves indicate that the
hydrophobic free energy and solvent accessibility display
multifractal scaling.

Some parameter spaces can be constructed using the pa-
rameters from the IFS, detrended fluctuation, and multifrac-
tal analyses to distinguish and cluster proteins. Each protein
can be represented by a point in these spaces. Numerical
results indicate that � proteins can be separated from �� ,�
+� ,� /�� proteins in the 2D space �q0 for HE, P1� and the
3D space �q0 for HE, P1, Cmax q on SA�. Then �+� proteins
can be separated from �� ,� /�� proteins in the 3D space �
�
for SA, P1, �z for the Z curve�, and finally � proteins from
� /� proteins in the 3D space ��max for SA, �min for SA, P1�.

Fisher’s linear discriminant algorithm is used to give a quan-
titative assessment of our clustering of the selected proteins.
The discriminant accuracies are satisfactory. In particular,
they reach 94.12% and 88.89% to separate � proteins from
�� ,�+� ,� /�� proteins in the 3D space �q0 for HE, P1,
Cmax q on SA�.

Our clustering algorithm is fast and can be evaluated in
many combinations if more large proteins are available in the
protein database. Once validated, it is easy to use to perform
the secondary structural classification of a protein.

The global mapping of protein structures into some spaces
was recently reported by Hou et al. �1�. Our clustering
method can also be regarded as a global mapping of protein
structures into parameter spaces. This method of protein
structure classification seems capable of yielding useful re-
sults.
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